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Abstract

This paper examines the drivers of U.S. business cycle fluctuations using a

Trend–Cycle Bayesian VAR, motivated by evidence that a single “main business

cycle” shock leaves much of inflation unexplained. The analysis splits demand

into monetary and non-policy components and explicitly models cost-push and

oil supply shocks. Applying a generalized “Max Share” procedure with sign re-

strictions to the stationary cyclical components, the results indicate that demand

dominates real activity and drives a large share of nominal fluctuations at hori-

zons that include the short run. At medium-run business cycle horizons (6–32

quarters), supply forces—cost-push and oil—often become pivotal for inflation

(especially when identification targets output). Crucially, allowing for these mul-

tiple shocks explains the vast majority of cyclical variation in both output and

inflation, closing the gap left by one-shock analyses. Overall, by disentangling

multiple demand channels and explicitly modeling oil shocks, this framework of-

fers a more precise understanding of the U.S. business cycle.
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1 Introduction

What drives the business cycle? A recent strand of literature aims to shed light on the

likely cause of U.S. business cycle fluctuations from an empirical perspective. Angele-

tos et al. (2020) concludes that a “main business cycle” shock can explain most of the

cyclical variation in output, albeit showing a puzzling disconnection between the real

and nominal sides of the economy. By contrast, Bianchi et al. (2025) show that this

puzzle largely disappears once the slow-moving long run trends are properly accounted

for. Both studies indicate that the “main business cycle” shock has demand-like char-

acteristics and while Bianchi et al. (2025) find that this shock explains about 60% of

the cyclical variation in output, a substantial portion of inflation fluctuations remains

unexplained—despite evidence that, at business cycle horizons, inflation does indeed

move in tandem with real activity in line with the New Keynesian framework.

Motivated by these findings, this paper shows that once we properly distinguish

different types of demand shocks (i.e., monetary and non-policy demand shocks), and

incorporate explicit cost-push and oil supply disturbances, nearly the entire business

cycle variation in both real activity and nominal variables can be explained within a

single Trend–Cycle VAR framework.

Methodologically, I build on the approach developed by Del Negro, Giannone, et

al. (2017)—and recently employed by Bianchi et al. (2025)—to extract low-frequency

trends from each variable and then identify the structural drivers over the business

cycle. I extend their setup in two key aspects. First, I split aggregate demand into

two distinct channels: a monetary policy shock capturing the direct influence of cen-

tral bank actions, and a non-policy demand shock reflecting broader demand conditions.

Second, I explicitly model oil prices to isolate oil supply shocks, separate from cost-push

shocks. Accounting for oil shocks is essential: historical episodes such as the oil crises

of the 1970s and early 1980s illustrate how major swings in global oil supply can pro-

foundly affect both inflation and output—yet these movements are often misattributed

to generic cost pressures or omitted.

Main findings Demand-side forces dominate real activity. Over horizons that in-

clude the short run (identification based on FEV accumulated over 1–32 quarters),

demand explains about two-thirds of fluctuations in output and unemployment; fo-

cusing on the medium run (FEV accumulated over 6–32 quarters), demand’s share

rises further, with non-policy demand the single largest contributor. On the nominal

side, demand accounts for most movements in the policy rate, again led by non-policy

demand. For inflation, demand is responsible for roughly two-thirds when short-run

horizons are included, whereas at medium-run horizons supply shocks—cost-push and

oil—become pivotal, especially under the output-targeted identification. Oil prices are

predominantly driven by oil-supply shocks. The IRFs are theory-consistent: a monetary

tightening lowers activity and inflation; non-policy demand lifts both and elicits policy

tightening with mild “ overshooting” in output; supply shocks are stagflationary and

trigger little systematic policy response. Splitting demand (policy vs. non-policy) and
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supply (cost-push vs. oil) largely closes the inflation “gap” left by one-shock analyses.

Related literature This paper contributes to the literature on the real–nominal

linkages over the business cycle and to other studies focused on identifying the main

structural drivers of the U.S. business cycle (Angeletos et al., 2020; Bianchi et al., 2025).

It reconciles the large role that Bianchi et al. (2025) attribute to demand-like forces

in real activity with the empirical importance of those same forces for price-setting

decisions. Moreover, adding explicit supply disturbances provides a clearer account of

how nominal and real variables comove.

Beyond these direct predecessors, two parallel recent contributions, Forni et al.

(2024) and Granese (2024), revisit the Blanchard and Quah (1989) framework that

views business cycles as driven by supply and demand shocks. Motivated by potential

informational limitations in the smaller-scale VAR of Angeletos et al. (2020), both

papers employ a large-dimensional Structural Dynamic Factor model using extensive

U.S. time-series data. In contrast to these predominantly frequency-domain approaches

that examine one demand and one supply shock only, this paper adopts a different

path within the Trend–Cycle Bayesian VAR framework of Bianchi et al. (2025) and

Del Negro, Giannone, et al. (2017), leveraging sign restrictions to distinguish multiple

demand from supply forces that drive business cycle fluctuations.

A second strand of related literature involves the identification of shocks using the

“Max Share” approach, originally proposed by Faust (1998), later extended by Uhlig

(2003), and more recently generalized by Carriero and Volpicella (2024) to allow for

multiple shocks simultaneously. My identification procedure relies on the Generalized

Max Share approach developed in the latter.

The remainder of the paper proceeds as follows. Section 2 introduces the extended

trend–cycle model, discusses the data, and outlines the estimation procedure. Section 3

details the identification strategy. Section 4 presents the main empirical findings, and

Section 5 concludes with a discussion.

2 Model

In this section, I present the econometric framework that distinguishes long-term trends

from business cycle fluctuations in real and nominal variables. The approach builds on

the Trend–Cycle Bayesian VAR of Del Negro, Giannone, et al. (2017), which explicitly

decomposes each observable series into a nonstationary trend and a stationary cyclical

component. Such a separation proves crucial: as highlighted by Bianchi et al. (2025),

relying on a conventional VAR that does not properly filter out low-frequency move-

ments risks conflating persistent trends with short-run dynamics, especially over periods

featuring structural breaks.

My baseline specification follows the setup in Bianchi et al. (2025) but makes one key

extension: I include oil prices among the observables in order to explicitly capture oil

supply shocks. Neglecting oil market dynamics could otherwise lead to misattributions
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of certain supply- or demand-driven fluctuations, since large swings in oil prices often

affect both output and inflation in ways that differ from more general cost-push or

demand shocks.

Formally, each observable zt is decomposed into a trend component τt evolving via

a unit-root process and a cyclical component ct governed by a stationary VAR. As

shown in Section 3, once these trends are extracted, I can focus on identifying multiple

structural shocks over business cycle horizons directly from the cyclical residuals of the

VAR.

The system of variables included in the model is as follows: Real GDP per capita

growth, denoted by gt, is modeled as

gt = τg,t +
(
cy,t − cy,t−1

)
,

where τg,t represents the persistent trend component of GDP growth. The term (cy,t −
cy,t−1) captures cyclical deviations around that trend, allowing the model to identify

the cycle in the level of real GDP, cy,t, which is the relevant variable for business cycle

analysis. Similarly, the unemployment rate ut and the one-year-ahead unemployment

expectations are decomposed as

ut = τu,t + cu,t, ue,1y
t = τu,t + ce,1yu,t

Next, the effective federal funds rate ft is specified as

ft =
(
τr,t + τπ,t

)
+ cf,t,

with the trend component given by the sum of the natural rate of interest and trend

inflation, and the stationary component cf,t capturing short-run deviations. In other

words, consistent with the literature, I assume that the Fisher relation holds in the long

run. The inflation rate πt is expressed as

πt = τπ,t + cπ,t

Inflation expectations at one and ten years ahead are modeled as

πe,1y
t = τπ,t + ceπ,t, πe,10y

t = τπ,t + δ ceπ,t + ηe,10yπ,t ,

so that these measures share the same underlying inflation trend with realized inflation.

They also share a cyclical component which loads with δ < 1 for the longer horizon. For

long run inflation expectations, we also allow for an idiosyncratic measurement error.

Finally, oil price growth ot is represented by

ot = τo,t + co,t,

where τo,t is the trend growth rate of oil prices.

For notational convenience, the observed variables are stacked in the vector

zt = (gt, ut, u
e,1y
t , ft, πt, π

e,1y
t , πe,10y

t , ot)
′,
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and similarly define the corresponding trend and cyclical component vectors as

τt = (τg,t, τu,t, τr,t, τπ,t, τo,t)
′, ct = (cy,t, cu,t, c

e,1y
u,t , cf,t, cπ,t, c

e
π,t, εc,o,t)

′.

The measurement error is collected in ηt = (ηe,10yπ,t )′ and reduced form errors are collected

in

ετ,t = {ετ,g,t, ετ,u,t, ετ,r,t, ετ,π,t, ετ,o,t}′ , εc,t =
{
εc,y,t, εc,u,t, ε

e,1y
c,u,t, εc,f,t, εc,π,t, ε

e
c,π,t, εc,o,t

}′
.

Then, the dynamics of the latent state components can be written as a system of

equations as follows:

τt = τt−1 + ετ,t,

ct = Φ1 ct−1 + Φ2 ct−2 + · · ·+ Φp ct−p + εc,t,

ηt = εη,t,

(1)

where τt, ct, and ηt denote, respectively, the trend, cyclical, and measurement error

components; the innovations ετ,t, εc,t, and εη,t are assumed to be mutually independent

with

εt =

ετ,t
εc,t
εη,t

 ∼ N

0,

Στ 0 0

0 Σc 0

0 0 Ση

 .

Here, Στ , Σc, and Ση are positive definite matrices.

State-space representation In order to estimate the system above, one can express

it in state-space form by linking the observed vector to the latent states. Let the

observed variables be stacked in the vector zt, it can be expressed as

zt = Λxt = Λτxτ,t + Λcxc,t + Ληxη,t (2)

where xt = {xτ,t, xc,t, xη,t}′ , xτ,t = τt, xc,t =
{
ct, ct−1, . . . , ct−(p−1)

}′
, xη,t = {ηt}′,

and p denotes the lags of the stationary cyclical components. The n × nτ matrix Λτ

captures (n− nτ ) cointegrating relationships, while Λc = [Λc,0, . . . ,Λc,p−1] and Λη maps

the measurement error state into the observed variables.

The vector of states xt evolves based on the following state-transition equation:

xt = Φxt−1 +Rεt (3)

The initial conditions of the trend and cyclical components are distributed as

xτ,0 ∼ N
(
τ , Vτ

)
, xc,0 ∼ N

(
0, Vc

)
where Vτ is an identity matrix, and Vc is the unconditional variance of c0, a function

of the VAR coefficients φ = {Φ1, . . . ,Φp}′ and variance Σc.
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2.1 Data

Eight quarterly U.S. time series are used to estimate the Trend–Cycle VAR. Growth

and price changes are annualized rates; the policy rate and inflation are expressed in

percentages; unemployment and expectations are in percent. In particular, the dataset

includes: (i) the growth rate of real per-capita GDP, gt; (ii) the unemployment rate, ut;

(iii) the median four-quarter-ahead unemployment rate forecasts, ue,1y
t , sourced from the

SPF; (iv) the effective federal funds rate, ft, where observations at the zero lower bound

are treated as missing following the approach in Del Negro, Giannone, et al. (2017)1;

(v) the inflation rate, πt, computed as the log difference of the GDP deflator (PGDP);

(vi) the median four-quarter-ahead inflation expectations for the PGDP, πe,1y
t , also from

the SPF; and (vii) an average measure of ten-year-ahead inflation expectations, πe,10y
t ,

which is constructed by combining survey forecasts on ten-year-ahead CPI inflation

from the SPF with those from the Blue Chip Economic Indicators survey and then

adjusting for the historical discrepancy between CPI and PGDP inflation.2 The period

from 1955:Q1 to 1959:Q4 is designated as the pre-sample, and the estimation sample

runs from 1960:Q1 to 2019:Q4.

2.2 Inference

The estimation strategy follows a Bayesian approach using a Gibbs sampler that lever-

ages the state-space representation in (2) and (3). As the estimation of the model

closely follows the baseline specification of Bianchi et al. (2025), I adopt similar priors

and initial conditions. In particular, for the assumptions regarding the initial condi-

tions and prior distributions, the approach of Del Negro, Giannone, et al. (2017) is

followed. Standard priors are imposed on the covariance matrices of the trend shocks,

Στ , and of the cyclical shocks, Σc, as well as on the VAR coefficients φ = {Φ1, . . . ,Φp}′.
Specifically, I assume

p(Στ ) = IW
(
κτ , (κτ + nτ + 1)Στ

)
,

p(Σc) = IW
(
κc, (κc + nc + 1)Σc

)
,

p
(
ϕ | Σc

)
= N

(
ϕ, Σc ⊗ Ω

)
I(ϕ),

where ϕ = vec(φ), and IW(·, ·) denotes the inverse Wishart distribution with mode Σ

and appropriate degrees of freedom. N (·) denotes the normal distribution, while the

indicator function I(ϕ) equals 1 if the VAR is non-explosive and 0 otherwise.

Priors The prior for the initial conditions of the latent trends, τ0, is centered at the

pre-sample means of the corresponding series. In our specification, the initial trend for

1In that case, the Kalman filter used in the state-space estimation provides an estimate of this

series during the ZLB period.
2This measure of long run inflation expectations is constructed based on Del Negro and Schorfheide

(2013).
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real GDP growth is set to 1%, for unemployment to 5%, for the real interest rate to

0.1%, for inflation to 2.5%, and for oil prices to 3%.

To construct the prior for the covariance matrix of the trend shocks, Στ , I assume

these shocks are a priori uncorrelated. Accordingly, we impose a standard deviation

of 1% for the expected change in the annualized trend of real GDP growth over a

40-quarter horizon, while for unemployment, the real interest rate, and inflation the

standard deviation is set at 1% over a 20-quarter period. For oil prices, the expected

change in the trend is assigned a standard deviation of 1% over a 10-quarter period. In

addition, a tight prior is enforced by setting κτ = 100.

For the shocks to the cyclical components, we similarly assume independence, thereby

specifying a diagonal structure for Σc. Their standard deviations are calibrated to re-

flect the observed pre-sample variability: the cyclical component of real per-capita GDP

growth is assigned a standard deviation of 5%, while that for unemployment is set to

1.1%. The shocks affecting the nominal interest rate and inflation are fixed at 0.8%

and 1.5%, respectively. For the cyclical component of four-quarter-ahead unemploy-

ment rate expectations, a standard deviation of 0.9% is imposed—consistent with its

lower variability relative to the observed unemployment rate. Similarly, the common

cyclical component of inflation expectations is given a prior standard deviation of 1.2%,

slightly below that of realized inflation. Finally, the cyclical shock for oil prices is cal-

ibrated with a standard deviation of 8%, in line with its pre-sample variance. We set

κc = nc + 2, where nc denotes the number of cyclical components.

For the VAR coefficients, denoted by ϕ = vec(φ) with φ = {Φ1, . . . ,Φp}, a con-

ventional Minnesota prior is employed with an overall tightness hyperparameter of 0.2.

Because the cyclical components are assumed stationary, the prior for each variable’s

own lag is centered at 0 rather than at 1.

The model is estimated using 50,000 draws, with the initial 25,000 discarded as

burn-in. The remaining draws are then thinned by retaining every 25th draw, resulting

in a final sample of 1,000 draws for the structural identification procedure described in

the next section.

3 Identifying demand and supply shocks

Identification strategy In this section, I describe the identification strategy fol-

lowed to disentangle four business cycle shocks: a monetary policy shock, a non-policy

demand shock, a cost-push shock, and an oil supply shock. While Bianchi et al. (2025)

shows that a single “demand-like” shock can already explain much of the cyclical vari-

ation of real and nominal variables, it cannot pinpoint which specific mechanisms are

at play—for instance, whether a demand impulse arises from monetary policy choices

or broader private/government spending, or whether rising costs reflect general infla-

tionary pressures (cost-push) or are rooted in shifts in global oil supply. By using a

Trend–Cycle framework that cleans out low-frequency fluctuations, I explain how one

can apply a multi-shock identification directly to the cyclical residuals to isolate these
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separate channels more precisely.

Specifically, I focus on four types of shocks, each corresponding to a distinctive

channel. A monetary policy shock captures the direct influence of central bank actions

on output and inflation, while a non-policy demand shock represents fluctuations in

aggregate spending that do not stem from policy interventions. An adverse cost-push

shock captures generalized upward pressure on prices due to increased wages or other

input costs, excluding oil, whereas an adverse oil supply shock arises from shifts in

global oil production or geopolitical tensions that disproportionately affect oil prices

and their impact on the economy. Together, these four shocks offer a rich decomposition

of cyclical dynamics that a “main business cycle” shock would otherwise obscure.

The overall goal is to identify the shocks by maximizing their contribution to the

(conditional) forecast error variance (FEV) of the output cycle cy,t or, as a robustness

check, the unemployment cycle cu,t. I consider two cases: (i) horizons h = 1, . . . , 32

and (ii) horizons h = 6, . . . , 32 (excluding cycles shorter than roughly 1.5 years). This

maximization of the target variable is combined with sign restrictions in order to be

able to uniquely identify each shock. Importantly, no additional relative magnitude

restrictions on the contribution of each shock to the FEV of each variable are imposed

(e.g., I do not force the monetary shock to explain a larger share of output variance

than the demand shock), so that the data determine these relative contributions in a

statistical manner.

Generalized Max Share The core of this strategy is a “Max Share” identification,

which finds the structural shock that explains the largest possible fraction of a target

variable’s forecast error variance. The specific implementation here relies on a Gen-

eralized Max Share procedure (Carriero & Volpicella, 2024) that identifies all shocks

simultaneously rather than one at a time. This approach avoids the conventional “se-

quential” method—which typically requires an arbitrary ordering of shocks—and thus

reduces the risk of confounding or blending one shock with another.3 Also when com-

bined with sign restrictions, in contrast to traditional sign-restricted set-identification,

this procedure yields point-identified shocks.

I begin by extracting the stationary (cyclical) component from the data. Recall

from (1) that the cyclical dynamics of the system are given by

ct = Φ1 ct−1 + Φ2 ct−2 + · · ·+ Φp ct−p + εc,t,

where εc,t is the vector of reduced-form residuals with covariance matrix Σc. The goal

is to decompose εc,t into k < nc structural shocks that each account for a distinct share

of the (conditional) forecast error variance (FEV) of a designated target variable, accu-

mulated over a chosen set of horizons, where nc is the number of cyclical components.

A standard representation writes the reduced-form residuals as:

εc,t = Σ1/2
c Qut, where Q′Q = I.

3On shock confounding within the Max Share framework, see Francis and Kindberg-Hanlon (2022)

and Dou et al. (2024).
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Moreover, Σ1/2
c is the (lower) Cholesky factor of Σc, ut is the vector of structural

shocks, and Q is an orthonormal rotation matrix. The objective is to select k columns,

q1, . . . ,qk, of Q that best explain the target’s FEV over the horizons of interest.

Following Carriero and Volpicella (2024), let Υi
h(ϕ) denote the h-step-ahead FEV

decomposition matrix for target variable i implied by reduced-form parameters ϕ. To

target over horizons, define the horizon-summed objective

Ῡi
H(ϕ) ≡

∑
h∈H

Υi
h(ϕ), H ∈

{
{1, . . . , 32}, {6, . . . , 32}

}
,

and solve

Q∗
1:k = argmax

Q1:k

k∑
i=1

q′
i Ῡ

i
H(ϕ)qi, (4)

subject to
q′
iqi = 1 for i = 1, . . . , k,

Si(ϕ)qi ≥ 0 for all i ∈ IS,
(5)

where Si(ϕ) collects the impact sign restrictions for shock i. Targeting at a single

horizon h⋆ is the special case H = {h⋆}, which replaces Ῡi
H(ϕ) with Υi

h⋆(ϕ).

For each posterior draw of the reduced-form parameters, I solve (4)–(5) to obtain

Q∗
1:k, recover the associated structural shocks and impulse responses, and then aggre-

gate across draws to form the posterior medians and coverage intervals reported in

Section 4.2.

Sign constraints The sign restrictions are deliberately minimal and imposed only

on impact to distinguish the dynamic responses of the shocks. Table 1 summarizes the

restrictions: (a) a monetary policy tightening raises the policy rate and reduces output

and inflation on impact; (b) a positive non-policy demand shock increases output,

inflation, and the policy rate on impact; (c) an adverse cost-push shock decreases output

and increases inflation while oil prices fall on impact; and (d) an adverse oil supply shock

decreases output and increases inflation, with oil prices rising on impact. We require

oil prices to move oppositely across supply shocks—up on oil-supply shocks, down on

adverse non-oil cost-push shocks—to isolate oil-market disturbances from generalized

input-cost pressures. These restrictions are consistent with standard macroeconomic

theory and recent studies (e.g., Ascari et al., 2024; Peersman, 2005).
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Table 1: Sign Restrictions

Variable Monetary Non-policy Demand Cost-push Oil Supply

Output − + − −
Unemployment

Unemployment Exp.

Policy Rate + +

Inflation − + + +

Inflation Exp.

Oil Price − +

Note: Positive signs (+) indicate an increase, while negative signs (−) indicate a decrease in the

respective variable on their impact response. No sign means that the response is left unrestricted.

4 Results

In this section, I present the main findings of the paper starting with the unobserved

trends and cyclical components extracted from the model estimation. Thereafter, I

analyze the contribution of each of the four identified shocks to the cyclical variation

of output and unemployment, and how each shock propagates to the business cycle

fluctuations of the real and nominal variables.

4.1 Trends and cycles

Figure 1 displays the unobserved trends and cyclical components estimated by the

model over 1960–2019. In Panel (1a), the red lines represent the observed data used

in the estimation, while the dark blue lines depict the posterior median of the latent

trends—derived from the model’s trend–cycle decomposition—together with their 68%

and 90% coverage intervals (blue shaded regions).

These trends capture several well-known historical patterns of the U.S. economy.

Notably, throughout the 1960s and 1970s, the model infers a pronounced rise in the

trend inflation component, coupled with an upward drift in the trend unemployment

rate. This finding aligns with the challenges policymakers faced in that era—such

as responding to productivity slowdowns and accommodating heightened government

spending in the mid-1960s—factors that jointly pushed both inflation and the “nat-

ural rate” of unemployment higher. Subsequently, with the shift to a more stringent

monetary policy stance (the Volcker period), the trend components for inflation and

long-term inflation expectations decline substantially. Even without explicit constraints

linking those two series, they move in tandem, suggesting that incorporating long-term

expectations helps the model distinguish trend from cycle. During the Great Financial

Crisis, the trend in unemployment rises further, aligning with other estimates of the

natural rate, whereas trend inflation remains fairly stable, consistent with literature

pointing to anchored expectations in the post-2000 period.

Turning to the cyclical components in Panel (1b), a clear business cycle pattern
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emerges. The unemployment rate spikes during recessions and gradually subsides in

expansions, reflecting the familiar rise-and-fall dynamics of labor market slack. Under

a New Keynesian perspective—where inflation tends to weaken when unemployment

is above its natural level—cyclical inflation moves inversely with unemployment: it

falls when unemployment is high and rebounds when unemployment is low. A similar

but smoother pattern appears for one-year-ahead inflation expectations, highlighting

the model’s ability to separate persistent trends from the more transitory swings in

nominal variables. If one also considers output (Panel (1a)), it mirrors these fluc-

tuations, with below-trend output accompanying high unemployment and vice versa,

further supporting the interpretation that the model captures standard business cycle

co-movements.

4.2 Demand, supply shocks and the business cycle

In this section, we examine how different types of demand- and supply-side shocks shape

U.S. business cycle dynamics. First, we turn to impulse response functions—illustrating

how each shock propagates through the cyclical components of key macroeconomic vari-

ables—and then to forecast error variance decompositions, which indicate the percent-

age of each variable’s business cycle fluctuations that are attributable to each shock.

Impulse Responses Figure 2 displays the median impulse responses of the cyclical

components for key macroeconomic variables over a five-year horizon, alongside their

68% posterior coverage intervals. These shocks are identified using the baseline speci-

fication, which targets the forecast error variance of output over horizons from 1 to 32

quarters and imposes the sign restrictions summarized in Table 1.

A contractionary monetary policy shock raises the interest rate on impact. As

expected, this tightening decreases output by approximately 2% on impact, an effect

that persists for about three years, while the unemployment rate increases over a similar

span. In tandem, inflation exhibits a sustained decrease that lasts for about four years,

with an initial decline of 0.4%. Oil prices show no statistically significant reaction,

confirming that a typical monetary policy shock has limited influence on their dynamics.

The non-policy demand shock induces a strong and persistent expansion in real

activity, with an impact response of 2% that aligns with the findings of Bianchi et al.

(2025). In response to this demand-driven boom, the Federal Reserve systematically

tightens policy for approximately three years. This policy reaction is a likely cause for

the subsequent “overshooting” of output, which temporarily dips below trend before

normalizing. Unemployment falls by around 0.2% on impact and returns to its baseline

after about four years. Inflation and inflation expectations rise on impact by 0.5% and

0.2% respectively, with expectations responding more strongly to this shock than to

any other.

Both adverse supply shocks are stagflationary. Following a cost-push shock, un-

employment rises by 0.1%, and the policy rate reaction is statistically insignificant.

Similarly, after an oil-supply shock, inflation jumps by 0.5%, but the policy rate shows
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Figure 1: Estimated trends and cycles
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Notes: Panel (A) displays the observed data (red lines) used to estimate the Trend–Cycle VAR model

for the period 1960–2019, together with the posterior median estimates of the latent trend components

(blue lines) and their corresponding 68% and 90% posterior coverage intervals (blue shaded regions).

Panel (B) shows the posterior median estimates of the latent cyclical components (blue lines) along

with their 68% and 90% coverage intervals (blue shaded regions). NBER recessions are indicated by

grey shaded areas.
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only a brief, insignificant easing. This muted reaction is consistent with policymak-

ers “looking through” temporary supply-driven price spikes. Although the IRFs of

oil-supply and non-oil cost-push shocks are close in shape, the identification separates

them along two clear dimensions. First, we impose opposite impact signs on the oil

price—up under oil-supply, down under cost-push—which pins down the rotation. Sec-

ond, the oil-supply shock accounts for the dominant share of the oil-price FEV, whereas

the cost-push shock contributes more to inflation outside the oil block.

The importance of short-run dynamics becomes clear when the identification targets

only core business cycle horizons of 6–32 quarters (Figure 3). While the responses to

non-policy demand and supply shocks remain broadly consistent, the results for the

monetary policy shock change markedly: the response of inflation becomes statistically

insignificant across most horizons, and inflation expectations rise on impact.

This pattern should not be taken as evidence of a central-bank information effect.

With quarterly data and without external instruments or high-frequency surprises, such

an effect is not cleanly identifiable. Rather, down-weighting short-run horizons weak-

ens the separation of a pure policy innovation from other forces (e.g., systematic policy

responses or financial frictions), allowing the estimated “policy” disturbance to load on

those components. Consistent with this view, the baseline 1–32 specification—where

short-run signatures discipline the rotation—recovers the conventional declines in in-

flation and expectations. A cleaner separation of policy and information components

would require augmenting the identification with high-frequency monetary surprises or

narrative instruments, which is beyond the scope of this paper.

In contrast to the monetary shock, the impulse responses to the non-policy demand

shock identified over the 6–32-quarter horizons remain broadly consistent with those

from the full-horizon identification, as do the responses to the two supply shocks. The

primary differences are a more muted initial output contraction and a more pronounced

positive impact on inflation expectations following the two supply-side shocks.

Finally, the remaining figures 4 and 5 display the impulse responses when targeting

the forecast error variance of unemployment (over horizons 1–32 and 6–32, respectively).

Both qualitatively and quantitatively, these responses are very similar to those obtained

when targeting output, confirming the robustness of the main results.

Variance contributions Tables 2 through 5 report the shares of cyclical variation

explained by the four identified shocks. Across specifications, a clear narrative emerges:

demand is the primary driver of the business cycle. The two demand shocks (Monetary

Policy and Non-policy Demand) together account for about one-half to three-quarters

of the variance in the core real-activity variables. Taken together, the four shocks

explain most of the business-cycle forecast error variance in both real and nominal

variables—typically 85–95% for real activity and the policy rate, with expectation series

somewhat lower (around 80%).

A more nuanced picture appears across horizons. In the baseline specification (tar-

geting the FEV of output over 1–32 quarters), which includes short-run movements,
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monetary policy is a strong driver of real activity. At the same time, non-policy de-

mand is the single largest contributor to the policy rate and to inflation when horizons

include the short run, indicating that underlying shifts in private and public spending

and preferences are central for price setting.

When I exclude high-frequency cycles and focus on the core business cycle (6–32

quarters), non-policy demand becomes dominant for real activity across targets. For

inflation, the split depends on the identification target: in the output-targeted spec-

ification (Table 3), supply (cost-push + oil) accounts for the majority share (nearly

57%); in the unemployment-targeted specification (Table 5), demand edges out supply

(about 50% vs. 40%). In all cases, oil prices are predominantly driven by the oil-supply

shock, consistent with the sign restrictions and the intended separation from non-oil

cost pressures.

Comparing these results to Bianchi et al. (2025) is revealing. In their trend–cycle

VAR, a single “main business cycle” shock accounts for about 60% of cyclical real ac-

tivity but a smaller share of inflation. By contrast, once I split demand into monetary

versus non-policy components and supply into cost-push versus oil disturbances, the

fraction of inflation explained by identified channels rises substantially. In essence,

modeling multiple demand and supply channels closes much of the unexplained infla-

tion gap, highlighting that several structural forces simultaneously underpin real and

nominal fluctuations. The core narrative—that demand drives real activity while both

demand and supply drive inflation—holds whether I target output or unemployment,

demonstrating the robustness of the results.

5 Discussion

This paper set out to disentangle the drivers of U.S. business cycle fluctuations using a

Trend–Cycle framework that distinguishes between multiple demand and supply shocks.

The results reveal a clear hierarchy of influence: demand-side forces—composed of

both monetary policy and broader non-policy components—are the primary engine of

fluctuations in output and unemployment. Supply shocks, while playing a crucial role,

are secondary drivers of real activity but become paramount for explaining inflation

dynamics, especially over medium-term business cycle horizons.

The impulse responses reveal theoretically consistent dynamics that lend consider-

able credence to the identification. For instance, the response to a positive non-policy

demand shock exhibits an “overshooting” pattern, where output rises for roughly two

years before temporarily dipping below trend. This is not an anomaly but rather

a reflection of the endogenous monetary policy response potentially captured by the

model. The Federal Reserve is seen hiking interest rates persistently to cool the demand-

driven boom, which eventually restrains the economy. This feedback loop is precisely

what standard macroeconomic models predict and is a testament to the model’s ability

to capture real-world dynamics. Similarly, the identified supply shocks are appropri-

ately stagflationary, while the model correctly shows the central bank tending to “look
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through” supply-driven price spikes—including oil—with only small and short-lived

policy-rate movements.

The analysis also yields an important insight into the nature of monetary policy

shocks themselves. While the baseline specification (1-32 quarters) successfully iden-

tifies a monetary policy shock with theoretically consistent effects, this result changes

when the identification focuses only on medium-run horizons (6-32 quarters). Interest-

ingly, under this alternative specification, the identified monetary shock no longer has a

significant effect on inflation. This may be interpreted not as a failure of the model, but

rather a finding. It suggests that the unique, identifying signature of a monetary policy

shock is most evident in its short-run dynamics. By instructing the model to disregard

this crucial short-run information, the procedure has more difficulty distinguishing a

pure monetary shock from other disturbances. This result therefore reinforces the choice

of the baseline specification and highlights that the short-run real-nominal trade-off is

a key feature of monetary policy shocks in the data.

From a policy perspective, these findings carry several implications. The key chal-

lenge for effective stabilization policy is not just to identify a “demand shock” but to

accurately diagnose its origin. An economic expansion driven by non-policy demand

warrants a different monetary policy response than one fueled by the central bank’s

own actions. The results provide a rationale for policymakers to look beyond aggregate

labels to understand the specific forces at play.

As a work in progress, this paper opens several avenues for future research. The next

step is to extend the framework to incorporate household inflation expectations from

the Michigan Survey of Consumers. This extension would enable a direct comparison

with professional forecasts and assess whether the identified shocks propagate similarly

through household beliefs.
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Figure 2: Impulse responses of the identified shocks targeting output over horizons

from 1 to 32 quarters

Monetary Non-policy demand Cost-push Oil supply

Note: Impulse responses of the identified shocks targeting the conditional FEV of output over horizons

from 1 to 32 quarters. The continuous lines depict the posterior median at each horizon (1 to 5

years), while the shaded regions show the 68% posterior coverage intervals of the impulse responses.
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Figure 3: Impulse responses of the identified shocks targeting output over horizons

from 6 to 32 quarters

Monetary Non-policy demand Cost-push Oil supply

Note: Impulse responses of the identified shocks targeting the conditional FEV of output over horizons

from 6 to 32 quarters. The continuous lines depict the posterior median at each horizon (1 to 5

years), while the shaded regions show the 68% posterior coverage intervals of the impulse responses.
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Figure 4: Impulse responses of the identified shocks targeting unemployment over

horizons from 1 to 32 quarters

Monetary Non-policy demand Cost-push Oil supply

Note: Impulse responses of the identified shocks targeting the conditional FEV of unemployment over

horizons from 1 to 32 quarters. The continuous lines depict the posterior median at each horizon (1

to 5 years), while the shaded regions show the 68% posterior coverage intervals of the impulse

responses.
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Figure 5: Impulse responses of the identified shocks targeting unemployment over

horizons from 6 to 32 quarters

Monetary Non-policy demand Cost-push Oil supply

Note: Impulse responses of the identified shocks targeting the conditional FEV of unemployment over

horizons from 6 to 32 quarters. The continuous lines depict the posterior median at each horizon (1

to 5 years), while the shaded regions show the 68% posterior coverage intervals of the impulse

responses.
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Table 2: Variance contribution of business cycle shocks (FEV accumulated over horizons

1–32), output-identified

Variable Monetary
Non-policy
Demand Cost-push Oil Supply

Total
Demand

Total
Supply Total

Output
33.2

(26.1, 39.9)
26.0

(15.1, 39.6)
19.6

(14.2, 25.9)
17.4

(11.9, 23.4) 59.2 37.0 96.2

Unempl.
30.1

(21.1, 39.2)
31.7

(17.5, 48.5)
15.6

(9.2, 23.1)
12.7

(7.2, 20.5) 61.8 28.2 90.0

Unempl. exp.
24.2

(16.0, 34.2)
28.5

(13.5, 44.7)
15.9

(9.1, 25.6)
13.1

(6.9, 21.7) 52.7 29.0 81.7

Policy rate
19.1

(11.4, 28.9)
59.5

(42.0, 72.3)
5.7

(2.4, 12.2)
5.8

(2.5, 14.1) 78.5 11.5 90.1

Inflation
17.1

(5.7, 36.8)
51.0

(33.7, 62.8)
11.3

(7.8, 15.5)
13.7

(7.6, 21.3) 68.1 25.0 93.1

Inflation exp.
13.3

(6.4, 26.2)
59.1

(42.9, 70.0)
4.5

(2.1, 7.6)
4.4

(1.9, 8.9) 72.4 8.9 81.3

Oil price
3.5

(1.2, 9.7)
20.7

(11.6, 32.2)
28.7

(19.8, 37.3)
41.6

(27.5, 52.7) 24.1 70.3 94.4

Note: The figures represent variance contributions of the identified shocks with 68% coverage intervals

in parentheses. ’Total Demand’, ’Total Supply’, and ’Total’ are aggregated figures across the respective

shocks. Totals below 100 reflect residual orthogonal shocks not targeted by the identification.

Table 3: Variance contribution of business cycle shocks (FEV accumulated over horizons

6–32), output-identified

Variable Monetary
Non-policy
Demand Cost-push Oil Supply

Total
Demand

Total
Supply Total

Output
19.2

(11.7, 29.0)
54.2

(36.7, 67.0)
11.6

(6.3, 19.0)
9.1

(4.9, 17.4) 73.4 20.7 94.1

Unempl.
14.4

(8.3, 23.7)
62.0

(47.0, 72.9)
7.3

(3.6, 14.1)
6.1

(3.3, 12.7) 76.4 13.4 89.9

Unempl. exp.
11.5

(6.7, 19.9)
58.7

(44.4, 68.5)
6.2

(3.1, 13.6)
6.2

(3.1, 13.5) 70.2 12.5 82.6

Policy rate
19.5

(12.6, 27.4)
58.5

(48.0, 69.0)
7.8

(3.6, 12.8)
6.1

(3.0, 11.2) 78.1 13.9 92.0

Inflation
6.4

(3.6, 10.8)
30.6

(19.6, 45.0)
24.5

(17.5, 30.1)
32.4

(22.1, 40.5) 37.0 56.9 93.8

Inflation exp.
12.9

(6.9, 19.6)
40.7

(30.3, 54.1)
13.9

(8.2, 19.5)
16.8

(9.0, 24.6) 53.5 30.8 84.3

Oil price
12.9

(3.3, 28.8)
7.1

(3.0, 14.9)
18.0

(10.6, 26.8)
55.1

(38.2, 68.9) 20.0 73.2 93.1

Note: The figures represent variance contributions of the identified shocks with 68% coverage intervals

in parentheses. ’Total Demand’, ’Total Supply’, and ’Total’ are aggregated figures across the respective

shocks. Totals below 100 reflect residual orthogonal shocks not targeted by the identification.
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Table 4: Variance contribution of business cycle shocks (FEV accumulated over horizons

1–32), unemployment-identified

Variable Monetary
Non-policy
Demand Cost-push Oil Supply

Total
Demand

Total
Supply Total

Output
29.5

(23.4, 36.0)
22.6

(14.9, 31.6)
23.6

(17.9, 28.7)
20.6

(15.2, 26.0) 52.1 44.2 96.2

Unempl.
31.1

(24.2, 38.5)
18.3

(10.0, 30.8)
23.4

(16.5, 30.5)
17.3

(11.9, 23.9) 49.3 40.8 90.1

Unempl. exp.
24.9

(17.8, 32.1)
14.5

(7.7, 26.4)
26.9

(19.2, 34.6)
17.3

(11.2, 24.6) 39.3 44.1 83.5

Policy rate
23.8

(14.9, 34.7)
37.9

(21.5, 57.4)
14.5

(6.5, 25.1)
8.8

(3.9, 17.2) 61.8 23.3 85.0

Inflation
33.5

(14.7, 52.6)
41.3

(15.5, 61.3)
8.0

(4.9, 11.6)
6.3

(3.0, 11.3) 74.9 14.3 89.2

Inflation exp.
23.7

(11.8, 38.3)
43.5

(18.5, 62.5)
5.3

(1.9, 11.9)
3.3

(1.4, 6.6) 67.2 8.7 75.9

Oil price
3.6

(1.3, 8.5)
14.8

(5.2, 29.0)
29.9

(16.5, 42.4)
37.1

(19.9, 51.7) 18.5 67.0 85.4

Note: The figures represent variance contributions of the identified shocks with 68% coverage intervals

in parentheses. ’Total Demand’, ’Total Supply’, and ’Total’ are aggregated figures across the respective

shocks. Totals below 100 reflect residual orthogonal shocks not targeted by the identification.

Table 5: Variance contribution of business cycle shocks (FEV accumulated over horizons

6–32), unemployment-identified

Variable Monetary
Non-policy
Demand Cost-push Oil Supply

Total
Demand

Total
Supply Total

Output
25.3

(17.6, 32.7)
39.6

(22.1, 53.5)
16.6

(10.5, 25.6)
14.7

(9.7, 21.9) 64.9 31.3 96.1

Unempl.
21.4

(13.7, 30.6)
49.9

(29.9, 63.4)
11.3

(5.7, 21.7)
8.9

(5.0, 17.0) 71.4 20.3 91.6

Unempl. exp.
16.8

(9.8, 25.4)
47.4

(27.6, 60.4)
12.0

(5.6, 24.2)
8.8

(4.4, 17.4) 64.2 20.8 84.9

Policy rate
20.2

(13.3, 27.1)
64.5

(52.4, 73.8)
5.0

(2.3, 11.0)
4.5

(2.0, 8.9) 84.7 9.4 94.1

Inflation
10.1

(4.1, 26.5)
40.1

(26.3, 55.5)
19.3

(11.3, 27.4)
20.9

(11.2, 30.5) 50.3 40.2 90.5

Inflation exp.
10.4

(5.5, 19.5)
50.9

(37.9, 62.9)
10.0

(4.8, 18.8)
10.0

(4.4, 17.8) 61.2 20.0 81.2

Oil price
2.9

(1.0, 8.5)
11.2

(5.2, 19.7)
16.0

(6.0, 27.1)
55.7

(34.3, 70.3) 14.1 71.8 85.9

Note: The figures represent variance contributions of the identified shocks with 68% coverage intervals

in parentheses. ’Total Demand’, ’Total Supply’, and ’Total’ are aggregated figures across the respective

shocks. Totals below 100 reflect residual orthogonal shocks not targeted by the identification.
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A Data Sources and Transformations

The model is estimated using eight quarterly U.S. time series for the period 1960:Q1

to 2019:Q4. The period from 1955:Q1 to 1959:Q4 is used as a pre-sample for prior

calibration. All data are sourced from the Federal Reserve Economic Database (FRED)

at the Federal Reserve Bank of St. Louis, unless otherwise noted.

• Real GDP per capita growth (gt): We use the annualized quarterly growth

rate of Real Gross Domestic Product Per Capita (FRED ID: A939RX0Q048SBEA).

• Unemployment rate (ut): The Civilian Unemployment Rate (FRED ID: UN-

RATE), which we convert from a monthly to a quarterly series by averaging.

• Effective Federal Funds Rate (ft): The Effective Federal Funds Rate (FRED

ID: FEDFUNDS), averaged to a quarterly frequency. Following Del Negro, Gi-

annone, et al. (2017), we treat observations during the Zero Lower Bound period

(2008:Q4–2015:Q4) as missing values.

• Inflation (πt): For inflation, we use the annualized quarterly growth rate of the

GDP Implicit Price Deflator (FRED ID: GDPDEF).

• One-year-ahead unemployment expectations (ue,1y
t ): The median one-year-

ahead forecast for the unemployment rate from the Survey of Professional Fore-

casters (SPF).

• One-year-ahead inflation expectations (πe,1y
t ): The median one-year-ahead

forecast for GDP deflator inflation from the SPF.

• Ten-year-ahead inflation expectations (πe,10y
t ): A measure of long run in-

flation expectations constructed by combining forecasts from the SPF and Blue

Chip surveys, adjusted to be consistent with GDP deflator inflation, following the

methodology of Del Negro and Schorfheide (2013).

• Oil price growth (ot): The annualized quarterly growth rate of the WTI spot

price (FRED ID: WTISPLC) deflated by the GDP deflator. To construct this

series, we convert the monthly price data to quarterly, adjust for general inflation

using the GDP deflator, and then calculate the growth rate.

B Model Estimation and State-Space Representa-

tion

B.1 Settings

The cyclical components of the model are assumed to evolve according to a VAR with

two lags (p = 2). The model is estimated using a Gibbs sampler with 50,000 draws.
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The first 25,000 draws are discarded as a burn-in period, and the remaining draws

are thinned by a factor of 25, resulting in a final set of 1,000 posterior draws used for

inference.

B.2 State-Space Representation

The Trend–Cycle VAR can be written in the following state-space form:

zt = Λxt = Λτxτ,t + Λcxc,t + Ληxη,t (6)

xt = Φxt−1 +Rεt (7)

where the vectors and matrices are defined as follows. The vector of n = 8 observable

variables is:

zt = (gt, ut, u
e,1y
t , ft, πt, π

e,1y
t , πe,10y

t , ot)
′

The state vector xt comprises the latent trend components xτ,t, the cyclical components

xc,t, and the measurement error components xη,t:

xt = (x′
τ,t, x

′
c,t, x

′
η,t)

′

The nτ = 5 trend components are collected in τt:

xτ,t = τt = (τg,t, τu,t, τr,t, τπ,t, τo,t)
′

The nc = 7 cyclical components and their lags are collected in xc,t:

xc,t = (c′t, c
′
t−1)

′, where ct = (cy,t, cu,t, c
e,1y
u,t , cf,t, cπ,t, c

e
π,t, co,t)

′

The nη = 1 measurement error component is collected in xη,t:

xη,t = ηt, where ηt = (ηe,10yπ,t )

The mapping from the states to the observables in (6) is defined by the Λ matrices:

Λτ =



1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1


, Λc =

[
Λc,0 Λc,1

]
, Λη

with

Λc,0 =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 δ 0

0 0 0 0 0 0 1


, Λc,1 =



−1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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Λη =



0

0

0

0

0

0

1

0


The state transition dynamics in (7) are governed by:

Φ =

Inτ 0 0

0 Φc 0

0 0 0

 , R =

Inτ 0 0

0 Rc 0

0 0 Inη


where Φc contains the VAR coefficients {Φ1,Φ2} and identity matrices to handle the

lags, and Rc is an identity matrix stacked on zeros. The vector of innovations is

εt = (ε′τ,t, ε
′
c,t, ε

′
η,t)

′, with covariance matrix Σ:

Var(εt) ≡ Σ =

Στ 0 0

0 Σc 0

0 0 Ση


B.3 Gibbs Sampler

We use a Gibbs sampler to estimate the model unknowns, leveraging the state-space

representation. For the j-th iteration of the sampler, the algorithm proceeds as follows:

1. Draw Latent States: Conditional on the parameter draws from the previous

iteration (Θj), draw the full time series of the state vector, xj+1
1:T . This is achieved

using the Carter and Kohn (1994) simulation smoother, which consists of a for-

ward pass (the Kalman filter) and a backward pass (the smoothing recursion).

• The Kalman filter recursively computes the filtered states xt|t and their co-

variance matrices Pt|t. The forecasting and updating equations are standard:

xt|t−1 = Φxt−1|t−1

Pt|t−1 = ΦPt−1|t−1Φ
′ +RΣR′

xt|t = xt|t−1 + Pt|t−1Λ
′(ΛPt|t−1Λ

′)−1(zt − Λxt|t−1)

Pt|t = Pt|t−1 − Pt|t−1Λ
′(ΛPt|t−1Λ

′)−1ΛPt|t−1

• The backward recursion then draws the smoothed states xj+1
t for t = T −

1, . . . , 1 from N(xt|t+1, Pt|t+1), where:

xt|t+1 = xt|t + Pt|tΦ
′P−1

t+1|t(x
j+1
t+1 − Φxt|t)

Pt|t+1 = Pt|t − Pt|tΦ
′P−1

t+1|tΦPt|t
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2. Draw Model Parameters: Conditional on the newly drawn history of the states

xj+1
1:T , draw the new parameter values Θj+1.

• VAR coefficients φ: Given the smoothed cyclical components ct, the VAR

can be written as a system of linear regressions. With a Normal-inverse-

Wishart prior, the posterior for the coefficients φ = vec({Φ1,Φ2}) is con-

ditionally Normal. We draw from this posterior and retain the draw if it

satisfies the stationarity condition for the cyclical VAR.

• Covariance matrices Στ ,Σc,Ση: Given the smoothed states, we can com-

pute the corresponding innovations ετ,t, εc,t, εη,t. With conjugate inverse-

Wishart priors, the posterior distributions for the covariance matrices are

also inverse-Wishart, from which we can draw directly.

• Parameter δ: The loading parameter δ in the measurement equation for

ten-year inflation expectations is drawn from its conditional posterior distri-

bution, which is also Normal under a Normal prior.

The algorithm iterates these two main blocks until the distribution of the draws con-

verges.
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